AUTOMATED THEOREM PROVING

Final Exam

Exercise 1. Let & = {=P(x)vVQ(f(z),x), P(g(c)), ~Q(y, z)}. Prove that
ap is unsatisfiable by finding an unsatisfiable finite set of ground instances
of ®.

Solution: Let o = {g(c)/z, f(g(c))/y,g(c)/z}. Clearly, ®o = {=P(g(c)) V

c
Q(f(g(c)), g(c)), P(g(c)), =Q(f(g(c)),g(c))} is unsatisfiable. So, by Herbrand’s
theorem, ag is unsatisfiable.

Exercise 2. Find all resolvents of the following two clauses:
Y1 = _\P(JT,y) \ ﬁP(f($)ay) \ _‘P(f(a)ag(uvb)) \ Q(QT,U),
P2 = P(f(x),g(a, b)) \4 _'Q(f(a)a b)

Solution: First, we replace the variable x in ¢y with a new variable w. We
distinguish the following cases.

Case 1. L = {=P(z,y)}, M = {P(f(x),9(a,b))} and N = {P(z,y), P(f(w), g(a,b))}.

By using the unification algorithm, we see that N is unifiable by oy =
{f(w)/x,g(a,b)/y}. Hence, we obtain the resolvent

—P(f(f(w)), g(a,b)) vV =P(f(a),g(u,b)) vV Q(f(w),u) vV =Q(f(a), b).

Case 2. L ={=P(f(x),y)}, M = {P(f(x),9(a,b))} and N = {P(f(x),y), P(f(w),g(a,b))}.

By using the unification algorithm, we see that N is unifiable by oy =
{w/x,g(a,b)/y}. Hence, we obtain the resolvent

_'P(w7g<a’ b)) v _'P(f(a>7g(u7 b)) \4 Q(w7 u) \% _'Q<f(a% b)



Case 3. N ={P(f(a),g(u,b)), P(f(w),g(a,b))}.

We see that N is unifiable by oy = {a/w,a/u}. Hence, we obtain the
resolvent

—P(z,y) vV -P(f(z),y) vV Q(x,a) vV ~Q(f(a), b).

Case 4. N = {P(z,y), P(f(x),y), P(f(w),g(a,b))}.

N is not unifiable, because z and f(x) can’t match.

Case 5. N = {P(z,y), P(f(a),g(u,b)), P(f(w), g(a,b))}.

We see that N is unifiable by oy = {f(a)/z,a/w,a/u, g(a,b)/y}. Hence,
we obtain the resolvent

—P(f(f(a)),9(a,b)) vV Q(f(a),a) vV ~Q(f(a),b).

Case 6. N = {P(f(z),y), P(f(a),g(u,b)), P(f(w), g(a,b))}.

N is unifiable by o = {a/z,a/w,a/u, g(a,b)/y}. Hence, we obtain the
resolvent

—P(a,g(a,b)) vV Q(a,a) vV -Q(f(a),b).
Case 7. N = {P(z,y), P(f(z),y), P(f(a), g(u,)), P(f(w),g(a,b))}.
N is not unifiable by Case 4.

Case 8. N = {Q(z,u), Q(f(a),b)}.
N is unifiable by oy = {f(a)/x,b/u}. Hence, we obtain the resolvent

~P(f(a),y) V=P (f(f(a)),y) V=P (f(a),g(bb)) vV P(f(w),g(a,b)).

Exercise 3. Prove by resolution that the formula ¢ is a logic consequence
of the set of formulas {1, @2} where:

1 = 3z (P(z) AVy(D(y) — Q(x,y))),
@2 = Va(P(x) = Vy(Cly) — —Q(x,y)),
v =Vz(D(x) —» -C(x)).



Solution: We have to prove by resolution that the set {y1, @2, ¢} is un-
satisfiable. For this, we have to find standard Skolem forms for ¢, s
and —p. Clearly, p; = J2Vy(P(x) A (-D(y) V Q(z,y))). So, the formula
Vy(P(a) A (=D(y) VQ(a,y))) is a standard Skolem form of ¢;. Also, we have
oy = VaVy(=P(z) V -C(y) V =Q(z,y)), which is in standard Skolem form.
And —¢ = Jz(D(z) AC(x)), and hence the formula D(b) AC(b) is a standard
Skolem form of —p. Now, from the clauses of the above Skolem forms we
give the following proof of [J by resolution:

1) P(a) input
2) ~D(y) v Q(a,y) input
3) ~P(x)V-C(y) vV —Q(z,y)  input
4) D(b) input
5) C(b) input
6) Q(a,b) (2,4)
7) =C(y) vV ~Q(a,y) (1,3)
8) —Q(a,b) (5,7)
9) O (6,8)

Exercise 4. Write a Prolog program for the predicate delete(X, L1, L2)
“L2 is the list obtained by deleting in the list L1 every occurrence of X”.

Solution:

delete(X, [],[]).
delete(X, [X|L1],L2) : — !, delete(X, L1, L2).
delete(X, [Y|L1],[Y|L2]) : — delete(X, L1, L2).

Exercise 5. Ackermann’s function is defined for every pair of natural
numbers by means of the following equations:
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a(0,y) =y +1,
a(x,0) = a(x —1,1) for z > 0,
a(z,y) = a(x — 1,a(x,y — 1)) for =,y > 0.

It is known that Ackermann’s function is an example of a recursive func-
tion that is not primitive recursive. Then, write a Prolog program to compute
Ackermann’s function.

Solution:
ackermann(0,Y, 7)) : — Zis Y + 1.
ackermann(X,0,7) : — X >0, X1is X — 1, ackermann(X1, 1, 7).

ackermann(X,Y,Z): — X >0, Y >0, X1is X —1, YlisY — 1,
ackermann(X, Y1, Z1), ackermann(X1, Z1, 7).



